Verfahren zur Bestimmung der auf der Bodenoberfläche abgelagerten flächenbezogenen Radium-226-Aktivität

K-Ra-226-BODOB-01

Bearbeiter:

M. Beyermann B. Höfs U.-K. Schkade K. Schmidt

Leitstelle für Fragen der Radioaktivitätsüberwachung bei erhöhter natürlicher Radioaktivität (ENORM)

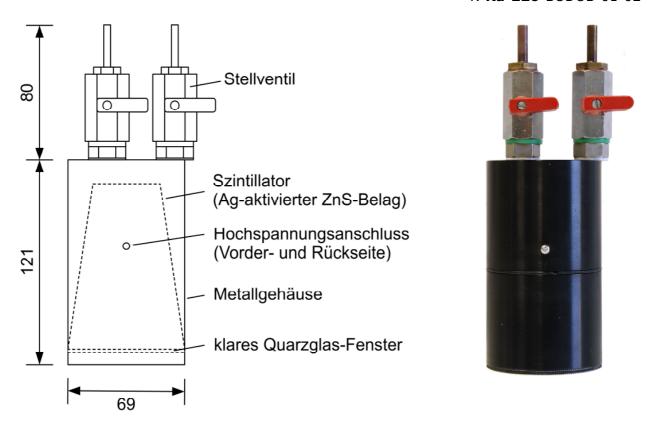
ISSN 1865-8725

Verfahren zur Bestimmung der auf der Bodenoberfläche abgelagerten flächenbezogenen Radium-226-Aktivität

1 Anwendbarkeit

Das beschriebene Verfahren dient der Bestimmung der durch nasse und trockene Deposition auf der Bodenoberfläche abgelagerten flächenbezogenen Ra-226-Aktivität. Mit diesem Verfahren können Ablagerungen der Ra-226-Aktivität von mehr als 0,1 Bq·m⁻² bei einer Sammeldauer von 30 Tagen erfasst werden. Damit erfüllt das Verfahren die Anforderungen der Richtlinie zur Emissions- und Immissionsüberwachung bei bergbaulichen Tätigkeiten (REI Bergbau).

2 Probeentnahme


Zur Probeentnahme wird auf das Verfahren A-γ-SPEKT-NIEDE-01 verwiesen.

3 Analyse

3.1 Prinzip des Verfahrens

Zum Prinzip des Verfahrens wird auf die Messanleitung H-Ra-226-TWASS-01 verwiesen. Es beruht auf dem Nachweis der Alphastrahlung von Rn-222 und seinen Folgenukliden Po-218 und Po-214 nach Überführung des Rn-222 aus einer entsprechend vorbereiteten Probe in eine Szintillationsmesskammer, eine sogenannte Lucas-Kammer (Abbildung 1); dieses Verfahren wird auch als Emanometrie bezeichnet. Die wesentlichen Bearbeitungsschritte sind:

- Veraschen der getrockneten Proben bei 400 °C;
- Mikrowellenaufschluss mit Salpetersäure und Fluorwasserstoffsäure;
- Zusatz von Bariumträgerlösung;
- Fällung der Sulfate;
- Lösen des Niederschlages in Tetranatriumethylendiamintetraacetat-Lösung (Na₄EDTA-Lösung) und Überführung in ein Emaniergefäß;
- Nachbildung des Folgenuklides Rn-222 über einen Zeitraum von ca. 14 Tagen;
- Überführen des Rn-222 in eine Lucas-Kammer;
- Nachbildung der kurzlebigen Rn-222-Folgeprodukte über einen Zeitraum von ca. 3 Stunden;
- Nachweis der Alphastrahlung.

Abb. 1: Lucas-Kammer (Abmessungen in mm)

3.2 Störungen

Das Verfahren ist spezifisch für die Bestimmung der auf der Bodenoberfläche abgelagerten flächenbezogenen Ra-226-Aktivität. Störungen durch andere Radiumisotope oder Radionuklide treten nicht auf.

3.3 Probenvorbereitung

Die gemäß Verfahren A- γ -SPEKT-NIEDE-01 gewonnen Proben werden ausgewogen und anschließend im Umlufttrockenschrank bei 80 °C bis zur Gewichtskonstanz getrocknet. Die Trockenmasse (TM) wird bestimmt. Das Probengut wird bei 400 °C etwa 24 Stunden trocken verascht. Anschließend wird der Rückstand zerkleinert und nochmals ca. 24 Stunden verascht. Die Aschemasse (AM) wird bestimmt.

3.4 Radiochemische Trennung

3.4.1 In einem Becher aus Polytetrafluorethylen (PTFE) werden 1 g bis 2 g der vorbehandelten Probe vorsichtig (mit intensiver Reaktion muss gerechnet werden) mit 3 ml bis 4 ml Wasserstoffperoxidlösung (10 mol·l⁻¹) versetzt und ca. 5 Minuten stehen gelassen.

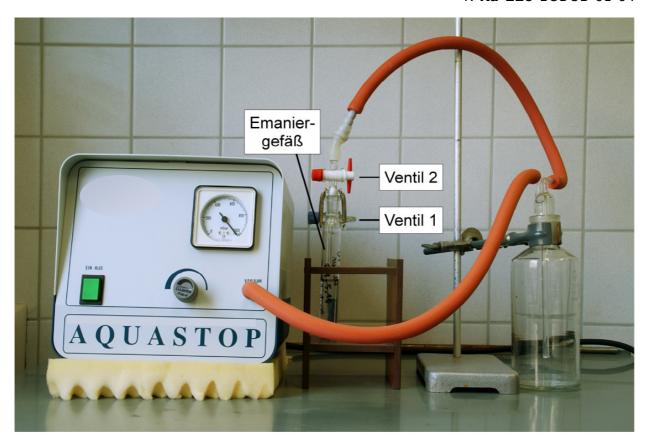
Anmerkung

Die weiteren Angaben der nachfolgenden Bearbeitungsschritte beziehen sich auf eine Einwaage von 1 g Asche.

3.4.2 Nach Zugabe von 7 ml konzentrierter Salpetersäure (14 mol·l⁻¹) und 1 ml Fluorwasserstoffsäure (22,6 mol·l⁻¹) wird der PTFE-Becher verschlossen. Es wird ein Mikrowellenaufschluss bei 210 °C (1000 Watt) über einen Zeitraum von ca. 1 Stunde

durchgeführt. Bei vollständig aufgeschlossener Probe wird eine klare Lösung erhalten; ist dies nicht der Fall, wird der Aufschluss nach Zusatz von 5 ml konzentrierter Salpetersäure (14 mol·l⁻¹) wiederholt.

- **3.4.3** Die aufgeschlossene Probe wird quantitativ in ein Becherglas überführt, der PTFE-Becher wird mit wenig heißem destilliertem Wasser nachgespült. Nach Zusatz von 3 ml Bariumnitratlösung (0,043 mol·l⁻¹) wird die Lösung auf dem Sandbad bis zur Trockne eingedampft. Der Rückstand wird in 5 ml bis 10 ml konzentrierter Salpetersäure (14 mol·l⁻¹) gelöst und die Lösung mit destilliertem Wasser auf ein Volumen von etwa 0,5 l aufgefüllt.
- **3.4.4** Der Lösung werden 5 ml Citronensäurelösung (1 mol·l⁻¹), einige Tropfen Methylrotlösung und ca. 2,5 ml konzentrierte Ammoniaklösung (13 mol·l⁻¹) bis zum Umschlag des Indikators nach gelb unter Rühren zugefügt. Die Lösung wird zum Sieden erhitzt, und aus der heißen Lösung wird Barium(Radium)-Sulfat mit 2,5 ml Schwefelsäure (9 mol·l⁻¹) gefällt. Nach dem Absetzen des Niederschlages (ca. 12 Stunden) wird die überstehende Lösung dekantiert und verworfen.
- **3.4.5** Der Niederschlag wird mit destilliertem Wasser in ein 100-ml-Zentrifugenglas überführt und zentrifugiert. Die überstehende Lösung wird dekantiert und verworfen.
- **3.4.6** Der Niederschlag wird zweimal mit je 50 ml destilliertem Wasser gewaschen und zentrifugiert. Die Waschlösungen werden dekantiert und verworfen.
- **3.4.7** Der Niederschlag wird unter Erwärmen im Wasserbad in 5 ml Na₄EDTA-Lösung (0,5 mol·l⁻¹) gelöst und die Lösung quantitativ in ein Emaniergefäß überführt, indem mehrmals mit wenigen Millilitern destilliertem Wasser nachgespült wird. Die Lösung im Emaniergefäß wird auf 25 ml (etwa zwei Drittel des Gefäßvolumens) mit destilliertem Wasser aufgefüllt.


3.5 Entemanation des Emaniergefäßes nach der Probenvorbereitung

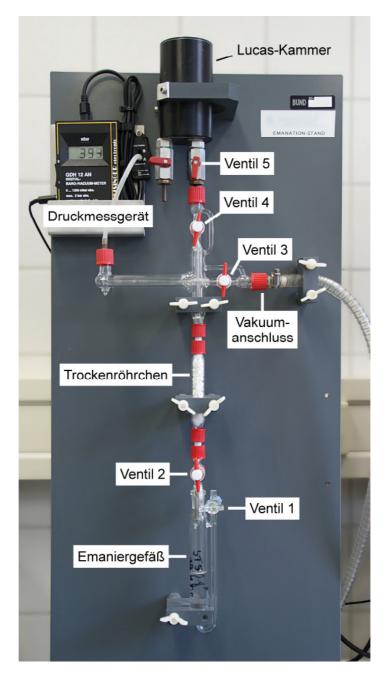
- **3.5.1** Mit einer Schlauchverbindung wird das Emaniergefäß über Ventil 2 mit einer regelbaren Vakuumpumpe verbunden (Abbildung 2). Anschließend wird die Vakuumpumpe angeschaltet. Üblicherweise wird ein Druck von 800 mbar eingestellt.
- **3.5.2** Um einen definierten Startpunkt für die Nachbildung von Rn-222 zu erreichen, wird vorhandenes Rn-222 aus dem Emaniergefäß entfernt. Die Ventile 1 und 2 am Emaniergefäß werden geöffnet, um über einen Zeitraum von ca. 15 Minuten einen gleichförmigen Gasstrom durch das Emaniergefäß zu leiten.

Anmerkung

Ein Schäumen der Lösung ist zu vermeiden.

- **3.5.3** Im Anschluss wird das Ventil 1 am Emaniergefäß geschlossen und über einen Zeitraum von ca. 5 Minuten evakuiert.
- **3.5.4** Als Letztes wird das Ventil 2 geschlossen und die Vakuumpumpe ausgeschaltet. Der Zeitpunkt des Abschlusses der Entemanation und Beginn der Nachbildung von Rn-222 (t_1) wird notiert.

Abb. 2: Anordnung zur Entemanation des Emaniergefäßes


3.6 Überführung von Rn-222 aus dem Emaniergefäß in die Lucas-Kammer

- **3.6.1** Nach ca. 14 Tagen wird das Emaniergefäß über ein mit Calciumchlorid gefülltes Trockenrohr an die Lucas-Kammer (Abbildung 3) gekoppelt.
- **3.6.2** Die Lucas-Kammer wird an einen Radium-Emanationsstand angeschlossen. Mit einer Vakuumpumpe wird die Lucas-Kammer evakuiert. Die Ventile 1 und 2 sind dabei geschlossen, die Ventile 3, 4 und 5 werden geöffnet.
- **3.6.3** Die Dichtheit des Systems ist dadurch zu prüfen, dass nach Schließen des Ventils 3 der Druck im System nicht ansteigt.
- **3.6.4** Um das Rn-222 aus dem Emaniergefäß in die Lucas-Kammer zu leiten, wird folgendermaßen verfahren:
- die Ventile 1, 2 und 3 sind geschlossen;
- das Ventil 2 wird vorsichtig geöffnet, so dass keine Flüssigkeit bzw. kein Schaum in das Trockenrohr übertritt;
- das Ventil 1 wird so weit geöffnet, dass ein gleichmäßiger Luftstrom durch die Probenlösung gesaugt wird. Nach etwa 20 Minuten ist die Entemanation beendet. Der Zeitpunkt der Überführung des Rn-222 in die Lucas-Kammer (t_2) wird notiert.

Anmerkung

 Um zu vermeiden, dass Aerosolpartikel in die Lucas-Kammer eindringen, ist in das mit Calciumchlorid gefüllte Trockenrohr zwischen Messkammer und Emaniergefäß Glaswolle einzufüllen und festzudrücken.

- Bei nicht zu vernachlässigender Rn-222-Konzentration der Raumluft wird empfohlen, das Einlassrohr von Ventil 1 mit einem mit Aktivkohle gefüllten Trockenrohr zu versehen.
- **3.6.5** Nach Einstellung des radioaktiven Gleichgewichts zwischen Rn-222 und seinen kurzlebigen Folgeprodukten (ca. 3 Stunden) wird die Zählrate infolge der Alphastrahlung in der Lucas-Kammer bestimmt. Der Zeitpunkt der Mitte der Messung (t_3) wird notiert.

Abb. 3: Anordnung zur Überführung von Rn-222 aus dem Emaniergefäß in die Lucas-Kammer

4 Messung der Aktivität

4.1 Allgemeines

Nach der Nachbildung der kurzlebigen Rn-222-Folgeprodukte bis nahezu zum radioaktiven Gleichgewicht wird die Zählrate infolge der Alphastrahlung von Rn-222, Po-218 und Po-214 gemessen. Die Dauer der Messung richtet sich nach der zu erwartenden Aktivität bzw. nach der geforderten Nachweisgrenze. Übliche Messdauern betragen 100 bis 200 Minuten.

Anmerkung

Nach der Messung ist die Lucas-Kammer im Luftstrom zu spülen, um eine fortdauernde Kontamination durch die Folgeprodukte des Rn-222 zu vermeiden. Die Untergrundzählrate der Lucas-Kammer ist zu überprüfen, um Kontaminationen feststellen zu können.

4.2 Kalibrierung

Für jede Lucas-Kammer i wird ein Kalibrierfaktor φ_i bestimmt. Dazu wird eine aus einem Ra-226-Aktivitätsnormal hergestellte Kalibrierlösung verwendet. Ein Aliquot der Kalibrierlösung wird in das Emaniergefäß gefüllt und die Kalibrierung nach Abschnitt 3.5 dieser Messanleitung durchgeführt. Der Kalibrierfaktor φ_i für die Lucas-Kammer i wird nach Gleichung (1) berechnet:

$$\varphi_{i} = \frac{A_{K,i}}{\left(R_{K,i} - R_{0,i}\right)} \cdot \frac{f_{1}}{f_{2}} \tag{1}$$

In der Gleichung (1) bedeuten:

 φ_i Kalibrierfaktor für die Lucas-Kammer i in Bq·s;

A_{K,i} Aktivität des Aliquots i der Kalibrierlösung in Bq;

R_{K,i} Bruttozählrate der Lucas-Kammer i in s⁻¹;

R_{0,i} Nulleffektzählrate der Lucas-Kammer i in s⁻¹;

- f_1 Korrektionsfaktor, der die Nachbildung der kurzlebigen Rn-222-Folgeprodukte in der Zeitspanne zwischen Abschluss der Entemanation bzw. Beginn der Neubildung von Rn-222 (t_1) und der Überführung des nachgebildeten Rn-222 in die Lucas-Kammer (t_2) berücksichtigt;
- f_2 Korrektionsfaktor, der die Aktivitätsabnahme des Rn-222 in der Zeitspanne zwischen Abschluss der Überführung in die Lucas-Kammer (t_2) und Zeitpunkt der Mitte der Messung (t_3) berücksichtigt.

Ausgewählte Werte für die Korrektionsfaktoren f_1 und f_2 enthält Tabelle 1.

Der Korrektionsfaktor f_1 wird nach Gleichung (2) berechnet:

$$f_1 = 1 - e^{-\lambda_{Rn-222} \cdot (t_2 - t_1)}$$
 (2)

In der Gleichung (2) bedeuten:

 λ_{Rn-222} Zerfallskonstante des Rn-222 in d⁻¹;

 t_2 - t_1 Zeitspanne zwischen Beginn der Neubildung von Rn-222 (Zeitpunkt t_1) und dessen Überführung in die Lucas-Kammer (t_2) in d.

Der Korrektionsfaktor f_2 wird nach Gleichung (3) berechnet:

$$f_2 = e^{\lambda_{Rn-222} \cdot (t_3 - t_2)}$$
 (3)

In der Gleichung (3) bedeuten:

 λ_{Rn-222} Zerfallskonstante des Rn-222 in h⁻¹;

 t_3 - t_2 Zeitspanne zwischen Überführung des Rn-222 in die Lucas-Kammer (t_2) und Zeitpunkt der Mitte der Messung (t_3) in h.

5 Berechnung des Analysenergebnisses

5.1 Gleichungen zur Berechnung

Die flächenbezogene Aktivität a_F von Ra-226 wird nach Gleichung (4) berechnet:

$$a_{\mathsf{F}} = \frac{\varphi_{\mathsf{i}} \cdot (R_{\mathsf{b}} - R_{\mathsf{0},\mathsf{i}})}{F \cdot \eta \cdot q} \cdot \frac{f_{\mathsf{2}}}{f_{\mathsf{1}}} \tag{4}$$

Die relative Standardmessunsicherheit der flächenbezogenen Aktivität von Ra-226 wird, gemäß Kapitel IV.5 dieser Messanleitungen, nach Gleichung (5) berechnet:

$$\frac{s(a_{\mathsf{F}})}{a_{\mathsf{F}}} = \sqrt{\frac{\frac{R_{\mathsf{b}}}{t_{\mathsf{m}}} + \frac{R_{\mathsf{0,i}}}{t_{\mathsf{0}}}}{(R_{\mathsf{b}} - R_{\mathsf{0,i}})^2} + \left(\frac{s(\varphi_{\mathsf{i}})}{\varphi_{\mathsf{i}}}\right)^2 + \left(\frac{s(\eta)}{\eta}\right)^2}} \tag{5}$$

In den Gleichungen (4) und (5) bedeuten:

 $a_{\rm F}$ flächenbezogene Aktivität von Ra-226 in Bq·m⁻²;

 R_b Bruttozählrate in s⁻¹;

 $R_{0,i}$ Nulleffektzählrate der Lucas-Kammer i in s⁻¹;

F Sammelfläche in m²;

q aliquoter Anteil der Ablagerung;

φ Kalibrierfaktor der Lucas-Kammer i in Bq·s;

 η chemische Ausbeute;

 $f_{1,}f_{2}$ Korrektionsfaktoren gemäß Tabelle 1;

 $t_{\rm m}$ Messdauer der Probe in s;

 t_0 Messdauer der Nulleffektmessungin s.

Anmerkung

- Die chemische Ausbeute bei der Fällung des Ra-226 mit Bariumsulfat beträgt erfahrungsgemäß 95 % (η = 0,95). Eine Ausbeutebestimmung erfolgt stichprobenartig durch Zusatz von Ba-133 als Tracer und gammaspektrometrische Messung.
- Die Überführung des Rn-222 vom Emaniergefäß in die Lucas-Kammer erfolgt quantitativ, wenn die Apparatur, die Ventile und die Schlauchverbindungen dicht sind. Von Vorteil dabei ist es, wenn die Schlauchverbindungen möglichst kurz gehalten werden.

5.2 Rechenbeispiel

5.2.1 Ermittlung der flächenbezogenen Aktivität von Ra-226

Für das nachstehende Rechenbeispiel werden folgende Zahlenwerte für übliche Warte- und Messzeiträume sowie die Nulleffektzählrate und den Kalibrierfaktor zu Grunde gelegt:

$$t_2 - t_1 = 19 \text{ d};$$
 $R_b = 0,155 \text{ s}^{-1};$ $t_3 - t_2 = 4 \text{ h};$ $R_{0,i} = 0,006 \text{ s}^{-1};$ $t_m = 6000 \text{ s};$ $\varphi_i = 0,505 \text{ Bq} \cdot \text{s};$ $t_0 = 6000 \text{ s};$ $\lambda_{\text{Rn-222}} = 0,1813 \text{ d}^{-1} (0,007554 \text{ h}^{-1});$ $q = 0,5;$ $\eta = 0,90.$

Nach Gleichung (4) beträgt die flächenbezogene Aktivität für Ra-226:

$$a_{\rm F} = \frac{0.505 \cdot (0.155 - 0.006)}{1.0 \cdot 0.90 \cdot 0.5} \cdot \frac{1.0307}{0.9617} \, \text{Bq} \cdot \text{m}^{-2} = 0.18 \, \text{Bq} \cdot \text{m}^{-2}$$

Mit den obigen Werten beträgt nach Gleichung (5) die relative Standardmessunsicherheit der flächenbezogenen Aktivität von Ra-226:

$$\frac{s(a_{\rm F})}{a_{\rm F}} = \sqrt{\frac{\frac{0,006}{6000} + \frac{0,155}{6000}}{(0,155 - 0,006)^2} + (0,1)^2 + (0,1)^2} = 0,15$$

5.3 Unsicherheiten der Analysenergebnisse

Die kombinierte Standardmessunsicherheit der flächenbezogenen Aktivität von Ra-226 wird wesentlich von der Unsicherheit, die durch die Zählstatistik bedingt ist, sowie von den Unsicherheiten des Kalibrierfaktors und der chemischen Ausbeute bestimmt. Sie liegt bei etwa 10 % bis 20 %.

6 Nachweisgrenzen des Verfahrens

6.1 Gleichungen zur Berechnung

Für die Berechnung der Nachweisgrenze wird gemäß Kapitel IV.5 dieser Messanleitungen verfahren.

Die Nachweisgrenze der flächenbezogenen Aktivität g wird bei gleicher Messdauer der Probe (t_m) und des Nulleffektes (t_0) nach Gleichung (6) berechnet:

$$g = \frac{\left(k_{1-\alpha} + k_{1-\beta}\right) \cdot \varphi_{i}}{F \cdot \eta \cdot q} \cdot \frac{f_{2}}{f_{1}} \cdot \sqrt{\frac{2 \cdot R_{0,i}}{t_{0}}}$$

$$\tag{6}$$

Neben den bereits definierten Symbolen sind:

g Nachweisgrenze der flächenbezogenen Aktivität in Bq·m⁻²; k_{1-a} , k_{1-b} Quantile der Standardnormalverteilung für die Fehler 1. und 2. Art.

6.2 Rechenbeispiel

Für die unter Abschnitt 5.2 aufgeführten Werte sowie für die Werte der Quantile der Standardnormalverteilung $k_{1-\alpha}=3,0$ und $k_{1-\beta}=1,645$ wird nach Gleichung (6) nachstehende Nachweisgrenze der flächenbezogenen Aktivität von Ra-226 erhalten:

$$g = \frac{(3.0 + 1.645) \cdot 0.505}{1.0 \cdot 0.90 \cdot 0.5} \cdot \frac{1.0307}{0.9617} \cdot \sqrt{\frac{2 \cdot 0.006}{6000}} \text{ Bq} \cdot \text{m}^{-2} = 7.9 \cdot 10^{-3} \text{ Bq} \cdot \text{m}^{-2}$$

7 Verzeichnis der erforderlichen Chemikalien und Geräte

7.1 Chemikalien

Nach Möglichkeit sollten analysenreine Chemikalien verwendet werden:

 $\begin{array}{lll} - & \text{Ammoniakl\"osung, NH}_3\text{-L\"osung:} & 13 \text{ mol·l}^{-1} \ (25 \text{ \%ig}); \\ - & \text{Bariumnitratl\"osung, Ba(NO}_3)_2: & 0,043 \text{ mol·l}^{-1} \ (11,2 \text{ g·l}^{-1}); \\ - & \text{Citronens\"aurel\"osung:} & 1 \text{ mol·l}^{-1} \ (210,15 \text{ g·l}^{-1}); \end{array}$

Fluorwasserstoffsäure, HF: 22,6 mol·l⁻¹;
 Methylrotlösung: 0,1 %ig;
 Na₄EDTA-Lösung: 0,5 mol·l⁻¹

(186,0 g Na₂EDTA·2H₂O und 40 g NaOH in deion. Wasser zu einem Liter auflösen);

Salpetersäure, HNO₃: 14 mol·l⁻¹;
 Schwefelsäure, H₂SO₄: 9 mol·l⁻¹;

- Wasserstoffperoxidlösung, H_2O_2 : ca. 10 mol·l⁻¹.

7.2 Geräte

- Szintillationsmesskammer (Lucas-Kammer);
- Emaniervorrichtung mit Emaniergefäß;
- Messplatz bestehend aus: Photomultiplier, Verstärker, Hochspannungsversorgung, Zählgerät, Registriereinrichtung;
- Heizrührer;
- übliche Ausrüstung eines radiochemischen Labors.

Tab. 1: Korrekturfaktoren f_1 und f_2

$$\lambda_{Rn-222} = 0,1813 d^{-1}$$

$$\lambda_{Rn-222} = 0,007554 \text{ h}^{-1}$$

t_2 – t_1 in d	f_1
10	0,8368
11	0,8639
12	0,8865
13	0,9053
14	0,9210
15	0,9341
16	0,9450
17	0,9541
18	0,9617
19	0,9681
20	0,9734
21	0,9778
22	0,9815
23	0,9845
23	0,9871
25	0,9892
26	0,9910
27	0,9925
28	0,9938
29	0,9948
30	0,9957

$t_3 - t_2$ in h	f_2
1,0	1,0076
1,5	1,0114
2,0	1,0152
2,5	1,0191
3,0	1,0229
3,5	1,0268
4,0	1,0307
4,5	1,0346
5,0	1,0385
5,5	1,0424
6,0	1,0464
6,5	1,0503
7,0	1,0543
7,5	1,0583
8,0	1,0623
8,5	1,0663
9,0	1,0704
9,5	1,0744
10,0	1,0785