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ABSTRACT 

Measurements of 131I activity in human thyroids were performed after the 
Chernobyl accident in Belarus. Settlements for such measurements were 
selected not randomly but depending on a level of the radioactive contamination. 
Then, a possibility to use geostatistical methods for spatial interpolation of 
settlement-average thyroidal activities from “measured” to “non-measured” 
settlements is under a question. To answer this question a feasibility study has 
been performed dealing with spatial sample determined by the geography of the 
thyroid measurements and 137Cs deposition density values, which are known for 
both sample (“measured”) and target (“non-measured”) settlements. The 
feasibility study covers two distinct areas in Belarus: South-East (A) and East 
(B). To allow extrapolation from higher sample values to generally lower target 
ones, trends are estimated from the data using local regression techniques. Then 
classical kriging procedure is used to model spatially correlated residuals. 
Prediction is successful for the area A, while for the area B the interpolation is 
unsatisfactory. The results for both areas are compared and analyzed. Criteria 
and methods to detect potentially dangerous situations are discussed.  
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INTRODUCTION 

Radiation-induced childhood thyroid cancer is a major consequence for public 

health after the Chernobyl accident in 1986, therefore it appears as a subject of a 

number of epidemiological studies like case-control [1], cohort [2, 3], and 

population-based studies [4, 5, 6, 7]. Success of an epidemiological study depends 

on quality of dosimetric data, therefore considerable scientific efforts are 

concentrated now on verification and improvement of thyroid dose estimates and on 

assessment of their uncertainties.  

The present paper describes the work done in support to a population-based 

risk study. While case-control and cohort type studies rely upon reconstruction of 

individual thyroid doses, the population-based study deals with the settlement-

average thyroid doses based on historical measurements of 131I in thyroid made 

soon after the accident. The so-called “measured” thyroid doses1 are considered as a 

most reliable source for dose reconstruction. Consequently, the “measured” thyroid 

doses are preferably to be used in a subsequent risk assessment. 

However, the “measured” doses are known for a limited set of settlements, 

only. A risk assessment study often needs in estimates of thyroid doses in the 

settlements where no direct measurements of thyroidal activity of 131I had been 

made. A common way to assess thyroid doses in such settlements is to apply a 

radioecological (see e.g. [8, 9]) or 'semi-empirical' [10] models. Such approaches 

extensively use 137Cs deposition density data as these data are well known from 

numerous spectrometric measurements made during years since the accident. 

Contrary, measurements of 131I in the environment, because of its short half-life, are 

sparse and not sufficient for the thyroid dose assessment using radioecological 

approaches. 

Another approach exists, which is based on statistical methods originated 

from geology and mining and known as geostatistical methods. These provide a way 

to interpolate spatial data taking into account observed spatial correlation between 

data points. That is, having a spatial sample of the settlement-average thyroid doses 

derived from direct measurements and estimating (or assuming) certain statistical 

                                               
1 One should understand, however, that these doses are computed from a measured activity 
of 131I in the human thyroid at a given day using individual- and settlement-specific 
information on parameters of the intake pathway. Such individual- and settlement-specific 
information is often derived from questionnaires and other sources or based on expert 
judgment or even implied. Obviously, this means that all uncertainties related to the 
reconstruction of the individual pathway parameters contribute into the uncertainty of 
“measured” thyroid doses. 
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properties of this sample, one can assess average thyroid doses and their 

uncertainties for the settlements without “measured” thyroid doses, located in the 

vicinity of the sample ones.  

However, a strong concern in applicability of geostatistical methods emerges 

as soon as one recognizes the fact that the settlements to perform thyroid 

measurements were selected not randomly but rather based on level of 

environmental radioactive contamination. In other words, one can say that the 

observed spatial sample is a preferential one. Working with such sample could lead 

to a systematic overestimation bias in predictions. 

To assess predictive capabilities of the geostatistical methods in this case, it is 

decided to conduct a feasibility study. The feasibility study has been performed with 

spatial sample of “measured” settlements, however interpolation and prediction are 

made for the ground deposition density of 137Cs, , instead of thyroid doses due 

to 

137q

131I. Unlike the thyroid doses, the values of  are known for both “measured” 

and “non-measured” settlements and a possibility exists to compare predictions 

with known values. The present paper describes this feasibility study and its results 

for the settlements in Belarus. 

137q

Nonetheless, one has to understand that spatial distributions of 131I and 137Cs 

need not to be identical. Generally, mechanisms of release from the damaged 

reactor, of atmospheric transport and deposition onto the ground are different for 

iodine and cesium. Because of these differences the isotopic ratios 131I/137Cs are 

observed to vary spatially [10].  

Spatial pattern of 137Cs deposition looks very “patchy”, with high gradients 

due to the fact that 137Cs was transported in the atmosphere mainly in aerosol form 

and any precipitations resulted in spots of high contamination. Atmospheric 

transport of 131I had occurred in different forms, of which aerosol form was only a 

fraction. Therefore, it is anticipated that spatial pattern of 131I deposition is not as 

strongly influenced by precipitations as the pattern of 137Cs was. One can expect 

smoother spatial distribution of 131I on the ground.  

Moreover, the spatial distribution of 131I ground deposition is not the quantity 

of interest for a risk assessment study. Instead, average thyroid dose in settlement 

is a quantity to be interpolated. Because of the main pathway for thyroid exposure 

to 131I was a consumption of milk it appears plausible that thyroid dose values can 

be regarded as averaged over a larger spatial area than a settlement area, i.e. 

including pastures. Therefore, a spatial distribution of average thyroid doses seems 

to be even smoother and less variable on spatial scale than 131I ground deposition 

pattern. 
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MATERIALS AND METHODS 

Description of the data 

As mentioned above, the present feasibility study deals with mean values of 
137Cs ground deposition density in settlements [11, 12]. These data are known [12] 

for practically all settlements of interest. The study deals with 460 sample 

settlements in Belarus. Settlements to predict in are called “target” settlements. 

Candidates for target settlements have been selected from those “non-measured” 

settlements (having less than 11 measured individuals) located within 30-km 

distance from any “sample” point. 

Geographical coordinates of settlements are transformed to Transverse 

Mercator coordinates using the custom set of geographic projection parameters: 

ellipsoid – Krassovsky, central meridian – 28°E, zone width – 10°, scaling factor – 

1.000. For convenience the coordinates are expressed in km relative to Chernobyl 

nuclear power plant. A coordinate transformation algorithm is borrowed from the 

program GSRUG publicly available on-line2. 

Spatial distributions of the data points 

Spatial distribution of the sample settlements is presented in Fig. 1, which 

shows spatial locations and indicates deciles of  distribution by size and color 

of the points. It is seen that the sample is split in two distinct groups of spatial 

points. The first group, indicated as “group A”, represents 308 populated places 

located in the vicinity of the Chernobyl power plant on the territory of Belarus. 

These settlements belong to Bragin, Khoiniki, Loev, El'sk, and Narovlya rayons of 

the Gomel oblast. The second group, indicated as “group B”, is formed by 152 

settlements in the Northern part of Gomel and Southern part of Mogilev oblasts. The 

both groups have similar spatial extensions and differ in size (the number of 

settlements). The group B can be characterized as poorly sampled than the group A.  

137q

 

                                               
2 GSRUG – Geodetic Survey Routine: UTM/TM and Geographic. National Resources Canada: 
Geodetic Survey Division. Geomatics Canada, 615 Booth Street, Ottawa, Ontario, Canada, 
K1A 0E9. Available on-line: 
www.geod.nrcan.gc.ca/index_e/products_e/software_e/gsrug_e.html Assessed:  9.02.2004 
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Fig. 1. Sample location map. Distribution of 137Cs ground deposition 
density in sample settlements in Belarus. Deciles of the distribution are 
marked with size and color of the sample points. 

“Non-measured” settlements which fall within 30-km range from any sample 

point have been selected as targets for the feasibility study. Spatial distribution of 

the exhaustive (sample and target) data set is shown in the Fig. 2. Exhaustive data 

set in the Fig. 2 demonstrate that spatial distribution cannot be considered as 

completely random. One can see some systematic behavior between data points. It 

is important to note that sample points corresponding to the group A reveal 

systematic tendency whilst the sample points in the group B area barely 

demonstrate systematic seen in the exhaustive data set.  
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Fig. 2. Exhaustive location map. Distribution of 137Cs ground deposition 
density in sample and target (within 30-km range) settlements in 
Belarus. Deciles of the distribution are marked with size and color of the 
points. 

As mentioned above, the sample settlements had been pre-selected based on 

the level of radioactive contamination. This is illustrated by the data in the Table 1 

below, where given are statistical characteristics of the sample and the target 

distributions. These data show the distributions are non-Gaussian and right-

skewed. The characteristics in the table are given for all target points and for sub-

sets separated according to a value of minimum distance to any sample point. It 

seen from the table that the target values are as lower as larger the distance. It is 

worth mentioning that there exists a group of target settlements, which can be 

attributed to both lists (A and B) of sample points. The total number of such points 

is 213, of which 65 points belong to target sub-group in range from 10 to 20 km, 

and 149 points – to a sub-group in range from 20 to 30 km. 
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Table 1. Statistical summaries of sample and target distributions for 
groups A and B. Shown are values of the 137Cs ground deposition 
density, kBq m-2

Data set N min 25%-ile median mean 75%-ile max 
Group A 

Sample 308 9.9 115 265 707 707 1.6×104

Target (all) 654 4.1 43 75 126 122 5.1×103

Target (0–10 km) 266 7.7 53 90 190 168 5.1×103

Target (10–20 km) 175 12 43 65 88 98 660 
Target (20–30 km) 213 4.1 30 72 77 105 348 

Group B 
Sample 152 13 328 664 834 1.2⋅103 3.3×103

Target (all) 2049 1.5 45 159 269 303 2.5×103

Target (0–10 km) 958 1.5 123 259 390 477 2.5×103

Target (10–20 km) 659 1.6 35 136 208 242 2.1×103

Target (20–30 km) 432 1.6 16 38 83.8 115 645 
 

Besides, the data exhibit apparent multimodality, which is seen from Fig. 3 

where kernel-smoothed probability density distributions of  in sample and 

target settlements are plotted for both lists A and B, respectively. The data in the 

table and the figure clearly demonstrate that the sample distribution is biased 

relatively the target distribution. Then, a prediction built on the sample can also be 

biased toward high values. 

137q
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Fig. 3. Probability density distributions of the 137Cs ground deposition 
density for the groups A (left) and B (right) settlements in Belarus. 
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Geostatistical concepts 

Since 1950s, the geostatistics had been rapidly developing, mainly, due to its 

applications for estimation of natural reserves and mining. Nowadays, there is an 

extensive set of the geostatistical methods and numerous developments and 

generalizations are still under way. A thorough review of them is out of the scope of 

the paper, therefore a short summary of basic geostatistical terms and concepts 

relevant to the procedure adopted in the present study is described below. Of the 

extensive literature on this subject the books [13, 14, 15, 16, 17, 18] can be advised 

as comprehensive references for the current state of geostatistics.  

Correlated data 

Geostatistics deals with random spatially correlated processes defined in a 

spatial (1-, 2-, or 3- dimensional) domain. Consider a spatial random process, , 

defined in a two-dimensional domain, D . Here,  is a two-dimensional coordinate 

vector of a point in the spatial domain. Realizations of this process, , are 

observed in sampling points 

Z

x

)( ixz

D∈ix , where ,N,i K1= . The goal of geostatistical 

estimation is to predict an expectation and a variance of the random process in a 

target point, , based on the observed realizations . 0x )( ixz

Intrinsic and second‐order stationarity 

Concept of stationarity of a random process plays an important role in 

geostatistical methods. The random spatial process is said to be second-order (or 

weak) stationary if  

µ=)](E[ xZ  (1) 

and its covariance depends only on a vector distance between points, , h

)(2)](),(cov[ hChxZxZ =+ . (2) 

If eq. (2) holds for scalar Euclidean distance, ji xxh −= , Nji ,,1, K= , then the 

random process is said to be isotropic, also. A common name for the vector h  is 

“lag”. 

Widely used in geostatistics is an intrinsic hypothesis, which corresponds to a 

second-order stationarity of increments 

)(2)]()(var[
0)]()(E[

hhxZxZ
hxZxZ

γ=+−
=+−

 (3) 
(4) 

where  is called “semi-variogram”. )(hγ
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Variogram and semi‐variogram 

The eq. (4) is a definition of the semi-variogram, γ . Under conditions of 

intrinsic stationarity (3) the variogram (4) becomes 

[ ]2))()((E)(2 hxZxZh +−=γ  (5) 

and under the second-order stationarity conditions (eqs. (1) and (2)) the semi-

variogram can be expressed through the covariance function 

)()0()( hCCh −=γ . (6) 

An advantage of using the variogram to characterize spatial correlation is due 

to the fact that in the presence of a spatial trend the covariance function may not be 

defined while the variogram still can exist and can be used as a measure of spatial 

correlation between points. 

In the present feasibility study variograms are calculated using classical 

estimator [19]  

[ ]∑
=

−+=γ
)(

1

2)()(
)(2

1)(
hN

i
ii xzhxz

hN
h . (7) 

Summations in eq. (7) are done over all points separated by the lag vector h . 

The lag values are grouped into arbitrary defined bins and  is a number of 

point pairs within the lag bin, therefore the eq. (7) represents a variogram in a 

binned form. Empirical variograms are fit by appropriate type of a theoretical 

variogram. There is a reach variety of functions legitimate for variogram modeling 

(see e.g. [14, 19, 20]). To mention just a few: nugget variogram for pure stochastic 

data 

)(hN

⎩
⎨
⎧ =

=γ
otherwise,

0,0
)(

c
hif

h  (8) 

and spherical variogram 

( )
⎪⎩

⎪
⎨
⎧

>

≤⎥⎦
⎤

⎢⎣
⎡ −⋅=⎟

⎠
⎞

⎜
⎝
⎛⋅=γ

ahifc

ahifc
a
hch a

h
a
h

,

,5.05.1Sph)(
3

 (9) 

where the parameters  and c  are called range and sill, respectively. It is often that 

the empirical variogram can be represented as a sum of several theoretical models, 

e.g. sum of nugget and spherical variogram. Such models are called nested. 

a

Kriging 

The random spatial process is modeled as a sum of deterministic and 

stochastic part 
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)()()( xYxmxZ += .  

The deterministic part, , is commonly approximated by global polynomial 

surface – “trend surface” 

)(xm

∑
=

=
L

l
ll xfaxm

0
)()( ,  

where  are power functions of independent spatial coordinates. Then, a kriging 

estimate of the process  in a prediction point, , is built as a weighted sample 

mean 

)(⋅lf

)(xZ 0x

∑
=

λ=
N

i
ii xzxz

1
0

* )()( , (10) 

where  are kriging weights. The estimation must meet requirements of minimum 

square error 

iλ

[ ]200
* )()(E xZxz − , (11) 

and unbiasedness 

[ ] 0)()(E 00
* =− xZxz . (12) 

The above requirements result in the so-called “universal kriging system”, 

which can be written in the following form (see details in [18], p. 166) 

LlNixfxf

xxxfxx

l

N

i
ili

N

j
i

L

l
illjij

,,0,,1)()(

),()(),(

0
1

1
0

0

KK ===λ

γ=µ+γλ

∑

∑ ∑

=

= =  (13) 

and the kriging variance 

∑ ∑
= =

µ+γλ=σ
N

i

L

i
lliiK xfxx

1 0
00

2 )(),( . (14) 

where  are Lagrange multipliers, which appear as a result of the constrained 

minimization procedure. 

lµ

The eq. (13) is a general form for major types of kriging, namely, simple kriging 

(corresponds to  and 0=L 00 =µ ), ordinary kriging ( 0=L  and ), and 

universal kriging ( ). Recently, one can see attempts to reformulate geostatistical 

problems in terms of traditional statistical models: the paper [20] introduced a 

concept of the «model-based» geostatistics. The latter methodology is put into the 

core of the software used in the present study – GEOR library [22], which is a special 

software library for the R programming language [23]. 

00 ≠µ

1≥L
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Representation of the data 

The sample data, { , are considered as realizations of a spatial 

random process, , in the sample points, , located in a two-dimensional 

spatial domain. That is,  is a set of vectors. Because of apparent log-normality, 

transformed data, , are considered as realizations of a Gaussian spatial 

process . The sample data demonstrate both systematic behavior and 

random fluctuations, thus the following model of the random process is assumed 

}niqi ,,1: K=

)(xQ ix

ix

)ln(~ qq =

)ln(~ QQ =

ε++=+= )()()()()(~ xYxmxZxmxQ , (15) 

where  represents non-stochastic spatial component of the random process 

 and called hereafter “trend”;  is a stochastic part of the process, which 

can be separated into correlated and non-correlated components,  and 

)(xm

)(~ xQ )(xZ

)(xY ε , 

respectively. A variance of the non-correlated component, , is called 

nugget in the geostatistical literature and can be interpreted as a combined result of 

micro-scale variations and a measurement error. 

2)var( τ=ε

The sample data are considered as points; however they represent values of an 

average contamination in an area of a settlement. That is, there is a certain class of 

short-range correlated variations, which are “seen” in the data as completely 

stochastic and uncorrelated. These are referred as micro-scale variation thus 

stressing the fact that such variations have correlation range smaller that size of a 

spatial point. In the present study spatial points are averages over settlement area. 

Trend estimation 

Selection of a method to model the trend is an important step in the present 

study because of the preferential sampling demonstrated above. Common in 

geostatistical practice is to model a trend by global polynomial spatial regression 

and plug-in polynomial coefficients into the system of kriging equations (universal 

kriging or kriging with the drift [19]. This method has shortcomings common to all 

polynomial interpolation techniques [24], i.e. an estimation with polynomials of high 

degree is extremely dangerous (and not recommended, respectively) in case of 

extrapolation, while low-degree polynomials may not reproduce complicated 

systematic variations, especially in the case of spatial or volumetric pattern. To 

avoid these shortcomings the technique of local polynomial regression has been 

used in the present study, namely LOESS method [25]. Local regression is built for 

A5 - 12 
 



every prediction point independently, using only  closest neighbor points from αN

N sample points. That is, in a prediction point, , trend is estimated as 0x

∑
=

=
L

n

n
n xxaxm

0
000 )()( , (16) 

where coefficients  are defined using weighted polynomial regression, i.e. 

minimization in the least square sense of the following expression 

)( 0xan

[ ]20
0

1
)(~ xxPQxxW iLi

i
N

i
−−⎟

⎠

⎞
⎜
⎝

⎛
δ
−∑

α

=

, (17) 

where parameter δ  is called bandwidth, weight function  is defined in the 

following way [25]: 

)(uW

⎪⎩

⎪
⎨
⎧

<⎟
⎠
⎞⎜

⎝
⎛ −=

otherwise0

11)(
33 uuuW , (18) 

and  is a polynomial of degree )( 0xxP iL − L  (usually, low-degree polynomials are 

used, i.e. ). Another parameter, 2≤L α , is called span; it defines the fraction of the 

sample points involved in the local regression procedure: NN α=α . If the bandwidth 

 is a constant then due to variable spatial density of the sample points the span 

varies too and, consequently, varies support for local regression. Contrary, if the 

span is fixed then the bandwidth, defined as 

δ

Nixxi ,,1),max( 0 K=−=δ , varies from 

one prediction point to another. 

A procedure of local polynomial fit results in estimates of the deterministic 

spatial trend in the sample points, ; their uncertainty is expressed by 

variance of the stochastic residual,  (see eq. (15)).  

)(*
ixm

)(xZ

Estimation of the residual 

If the residual data, , are correlated then they are subjects for further 

geostatistical analysis. Correlations within the residual points are revealed and 

characterized by means of the variogram (4). If residuals are intrinsically stationary 

then the variogram is used to construct the kriging predictor (10). Empirical 

variogram is fit by an appropriate theoretical variogram and the latter is plugged 

into the kriging systems (13). In the present study the trend is estimated 

independently by local regression techniques (see eqs. (16) – (18)) and subtracted 

from the data and the ordinary kriging procedure is applied to the residual data to 

get kriging prediction in target points, , as well as kriging variance, .  

)( ixz

)( 0xzK )( 0
2 xKσ
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Back-transformation and analysis 

The predicted data in the target points need to be back-transformed. This is 

done using standard formulas for log-normal kriging (see e.g. [13], p. 270):  

( )
( )[ ]1)(exp)()(

)()()(exp)(

0
22

00
2

0
2

2
1

00
*

0

−σ=σ

σ++=

xxqx

xxzxmxq

K

KK  
(19) 

(20) 

The kriging estimates are compared then to the known values for the target 

points and an observed variance of kriging prediction is compared with estimated 

kriging variance (20).  

RESULTS AND DISCUSSION 

Raw variograms of the sample data are shown in the Fig. 4. From the figure it 

is seen that the group A variogram has no sill, i.e. it is unbounded. This indicates 

presence of a trend in the sample data. That is, the data are not stationary and 

kriging is not authorized for the raw data. On the other hand, the raw variogram for 

group B data is bounded, i.e. the sample data do not reveal systematic behavior 

present in the exhaustive data set (see exhaustive location map –– Fig. 2). The group 

B raw variogram demonstrates higher variability (fluctuations in the sill) between 

bins as a consequence of a poorer sampling.  
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Fig. 4. Raw variograms of log-transformed sample data for the 
settlements in the groups A and B. 
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Because of preferential sampling specific to the data, it is important to assess 

underlying trend; however, as it can be seen from the raw variograms the group B 

(Fig. 4) the sample data does not demonstrate an obvious presence of a trend.  

Assessment of the trend 

Trend estimation is done by LOESS method [25]. Two most important 

parameters are the span, , and a degree of regressing polynomials,α L ,. There exist 

no unique quantitative recommendations on appropriate selection of these 

parameters ([24], p. 437).  

Estimation for many target settlements falls into an extrapolation case; 

therefore, it appears safer to operate with low-degree polynomials. On the other 

hand, zero degree polynomials are simply average values and can not provide 

information on tendency existing in the data, which is important for extrapolation. 

Following this reasoning, the degree of smoothing polynomials has been chosen 

equal to 1.  

Another difficult problem is a selection of an appropriate value for the span. 

For this, the following was taken into account:  

• smoothness of the trend surface; the less span is used, the more variable 

and less smooth the trend surface; 

• normality and stationarity of the residuals; 

• range, sill, and nugget of residual variograms. 

Contour plots of the trend surfaces for both lists A and B are shown in the 

Fig. 5 and 6. Both plots are made with the same values for span and degree of local 

regression. Residual variograms for different trend models are presented and 

discussed below.  
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Fig. 5. Estimation of trend by local regression: group A. Points are the 
sample settlements. Color and size of the points represent deciles of the 
sample distribution. 

Trend (Cs−137) estimation by Loess (span= 0.35 , degree= 1 )
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Fig. 6. Trend estimation by local regression: Group B. Points are the 
sample settlements. Color and size of the points represent deciles of the 
sample distribution. 
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Modeling of the residuals 

Residuals after removal of the locally regressed trend are distributed normally 

and show no signs of multimodality seen in the raw data (Fig. 3). Also, the residuals 

are not independent; they demonstrate a spatial correlation. Shown in the following 

figures are residual variograms corresponding to trend models differing by the span 

value.  

The Fig. 7 clearly demonstrates how the trend takes out variability from the 

data. One can see that decrease in value of α  results in a shorter range of the 

correlation and smaller sill. Another important feature of this figure is an effect of 

sill stabilization as the span decreases. This means that residual variance beyond 

the correlation range is almost constant and does not depend on distance between 

sample points. A comparison of the raw variograms for the group A (Fig. 4) and the 

variogram for 1=α  clearly shows effect of removal of a strong trend3. It is also 

remarkable that the variogram of residuals for 1.0=α  shows very weak correlation. 

That means that the trend model takes out almost all correlated part of the 

variability, leaving out non-correlated (almost) “white noise”.  
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Fig. 7. Residual variograms for different trend models: group A 

                                               
3 Local regression with span 1=α  uses all data points, however, weighting is done 

individually for every prediction point according to distance between the prediction and a 

sample point. 

A5 - 17 
 



Residual variograms for the group B shown in the Fig. 8 demonstrate similar 

behavior as for the group A, i.e. the sill decreases as the span becomes smaller. 

However, an important difference from the previous figure is that large span trend 

models fail to model a trend in these data. One can see from the Fig. 8 that the 

variograms for the span values 75.0≥α  are practically identical and coincide with 

the raw variogram (Fig. 4). For the smaller span values ( 55.0≤α ) the figure 

demonstrates reduction of the sill and shortening of the correlation range. Strong 

fluctuations between variogram points are likely due to poor sampling statistics.  
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Fig. 8. Residual variograms for different trend models: group B 

The residual variograms shown in the Fig. 7 and 8 are fit using spherical 

model for theoretical variogram (9). The residual variograms are taken isotropic as 

no meaningful anisotropy was found from angular variograms. Parameters of the 

fitted theoretical variograms are given in the Table 2.  

Table  2. Parameters of the theoretical variograms for groups A and B. 

Variogram parameters 
Trend parameters 

Group 

α  L 
Range, 

km 
Sill 

)(∞γ  
Nuggeta 

)0(γ  

GSDtotal 

⎟
⎠
⎞

⎜
⎝
⎛ ∞γ )(e  

GSDmeas 

⎟
⎠
⎞

⎜
⎝
⎛ γ )0(e  

A 0.35 1 16.6 0.364 0.141 1.83 1.46 

B 0.35 1 7.5 0.591 0.125 2.16 1.42 

a ‘Empirical’ nugget, i.e. a value of the empirical variogram in the first bin:  )( 1hγ
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Prediction by kriging 

Estimation of 137Cs deposition density in target points has been done by 

performing the following steps:  

• normalization of the data by log-transform; 

• estimation of the trend by local linear ( 1=n ) regression (eqs. (16) and (17)) 

with span 35.0=α ; 

• validating spatial stationarity and isotropy of the residual and modeling of 

the residual variograms; 

• spatial interpolation of the residual data and estimation of their uncertainty 

by kriging; 

• back-transformation of the kriging results combined with trend estimates 

using eqs. (19) and (20). 

The following figures (Figs. 9 and 10) illustrate how the trend model 

compensates a bias, which exists in sample data due to the preferential sampling. 

Shown in the Fig. 9 are probability distributions for group A data. Sample data 

(dashed line) are obviously biased compared to target data (solid line), however the 

predictions (dotted line) derived from the sample are distributed remarkably similar 

to the true target data.  
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Fig. 9. Cumulative probability distributions for sample, true, and 
predicted values for group A settlements. 

The group B results are drawn in the Fig. 10. The probability distribution of 

predicted values (dotted line) fails to reproduce the distribution of true values (solid 
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line), although it is shifted toward lower values compared to the sample one (dashed 

line). Then, one can say that the group B sample is poor and does not provide 

sufficient information for the trend assessment. 
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Fig. 10. Cumulative probability distributions for sample, true, and 
predicted values for the group B settlements. 

This behavior can be compared with variograms shown in Figs. 4, 7, and 8. 

First, the raw variogram for the group A is unbounded; this demonstrates existence 

of systematic trend in the sample data. The raw variogram for the group B show 

correlation range approximately equal to 10 km and no evidence of a trend. The 

residual variograms (Fig. 7 and 8) support these observations. Namely, trend models 

of different spans for group A data effectively remove variability from the sample 

data. Residuals for the accepted trend model with span 55.0=α  show correlation 

range of approximately 20 km. Contrary, residuals for the group B data are not 

affected by trend models unless for spans 35.0≤α . Correlation range in these data 

is very short, less than 10 km. In other words, the sample data for the group B do 

not provide enough information for estimation of a trend and, consequently, trend 

model can be inadequate for prediction of the target data within 30-km range. It is 

likely, that the predictions made for the group B data will be better at target points 

located near (i.e. within the observed correlation range) the sample points. In the 

next sub-section the quality of predictions will be analyzed depending on the 

distance between target and sample points. 
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Cross-validation 

Cross-validation is a general term which is applied generally to two different 

situations. One is a so-called “external” cross-validation when target points are 

completely different from the sample ones. Another method is a kind of resampling 

procedure, i.e. a point (or a group of points) is removed from the sample dataset and 

a prediction is made for the removed point based on the rest of the sample. This 

procedure is repeated for every sample point and then one can compare the 

distributions of the true sample and the predicted values. This method is known as 

“leaving-one-out” cross-validation. Unique feature of the present feasibility study is 

a possibility to compare the external and ‘leaving-one-out’ cross-validation 

techniques, because in the true values are known for the prediction (target) points.  

For comparison purposes, the target points are characterized by minimum 

distance to any sample point, . This criteria is not sufficient to unambiguously 

distinguish between inter- and extrapolation cases, however it still provides some 

clue for this. Namely, one can say that the target points with higher  are more 

likely to fall in extrapolation case and vice versa. 

minH

minH

The true and the predicted values are compared and analyzed by various 

ways. First, the predicted values are plotted against the true ones. All target points 

are divided into three subgroups depending on the value of : (a) 0…7 km; (b) 

7…15 km; and (c) 15…30 km. The values 7 and 15 km are close to the ranges of the 

variograms for the groups B and A, respectively. Additionally, fourth sub-group is 

created from the “leaving-one-out” cross-validation data. Plots for the group A are 

presented in Figs. 10–13 and plots for the group B — in Figs. 14–17. 

minH

From the Fig. 10 one can see an example of a good agreement between 

predicted and true values for the group A settlements. For the target settlements in 

other subgroups of the group A the agreement becomes poorer as the  

increases (see Figs. 11 and 12). The “leaving-one-out” cross-validation data (Fig. 13) 

provide another example of a good agreement while one can notice the  values 

match those for the first sub-group plotted in the Fig. 10. From the Figs. 10–13 one 

can conclude: (a) the larger distance from a prediction point to the sample ones the 

less adequate is a trend model and higher deviations of predictions from the true 

values; and (b) results of the cross-validation based on the sample points (“leaving-

one-out”) are in a good agreement with results of the external cross-validation for 

target points located within similar range of . 

minH

minH

minH
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Group A external cross−validation: Hmin= 0...7 km
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Fig. 10. External cross-validation plot for the group A target settlements 
( km). 70 min <≤ H

Group A external cross−validation: Hmin= 7...15 km
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Fig. 11. External cross-validation plot for the group A target settlements 
( km) 157 min <≤ H
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Group A external cross−validation: Hmin=15...30 km
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Fig. 12. External cross-validation plot for the group A target settlements 
( 3015 min <≤ H km) 

Group A ’leaving−one−out’ cross−validation: Hmin=0...8 km
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Fig. 13. “Leaving-one-out” cross-validation plot for the group A sample 
settlements ( km) 80 min <≤ H

A5 - 23 
 



The cross-validation results for the group B settlements differ considerably 

from those for the group A. One can see from the Figs. 14–17 the predicted values 

demonstrate systematic overestimation for all ranges of . The only reasonable 

agreement can be seen for the true values higher than 10

minH

3 Bq m-2 within range 

km for external cross-validation (Fig. 14) and within range 

km for “leaving-one-out” cross-validation results (Fig. 17). For other 

sub-groups the overestimation is stronger as lower the true values (see Figs. 15 and 

16). These observations agree with preliminary conclusions derived from the 

variogram analysis. Namely, the group B sample data represent mostly high 

contaminated places and their sampling pattern is sparse. As a result, they provide 

not enough information to derive the spatial trend to predict lower values. 

70 min <≤ H

140 min <≤ H

 
Group B external cross−validation: Hmin= 0...7 km
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Fig. 14. External cross-validation plot for the group B target settlements 
( km) 70 min <≤ H
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Group B external cross−validation: Hmin= 7...15 km
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Fig. 15. External cross-validation plot for the group B target settlements 
( km) 157 min <≤ H

 
Group B external cross−validation: Hmin=15...30 km
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Fig. 16. External cross-validation plot for the group B target settlements 
( 3015 min <≤ H km) 
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Group B ’leaving−one−out’ cross−validation: Hmin= 0...14 km
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Fig. 17. “Leaving-one-out” cross-validation plot for the group B sample 
settlements ( km) 140 min <≤ H

Figures 10–17 provide a qualitative insight to the cross-validation results. To 

quantify them statistical properties of the distributions for the sub-groups with 

different  are given in the Table 3. minH

 

A5 - 26 
 



Table 3. Statistical properties of the cross-validation results. Quantiles 
of the distributions for the ratio “Predicted/True” as a function of  

(minimum distance the target to any sample point) 
minH

Quantile for probability: minH  
range (km) 0.025 0.05 0.25 0.5 0.75 0.95 0.975 

Group A: external cross-validation 

0 ... 5 0.66 0.73  0.93 1.13 1.39 1.80 1.99 

0 … 10 0.54 0.59  0.89 1.09 1.40 1.92 2.15 

0 … 15 0.46 0.53  0.85 1.09 1.47 2.36 2.77 

0 … 20 0.30 0.38  0.75 1.07 1.46 2.45 3.21 

0 … 25 0.22 0.27  0.71 1.04 1.47 2.43 3.15 

0 … 30 0.16 0.22  0.60 1.01 1.50 2.56 3.20 

Group A: “leaving-one-out” cross-validation 

0 ... 5 0.36 0.52 0.86 1.09 1.42 2.22 2.78 

0 … 8 0.35 0.53 0.86 1.11 1.42 2.24 2.78 

Group B: External cross-validation results 

0 ... 5 0.54 0.64 1.07 1.46 2.18 4.16 5.3 

0 … 10 0.49 0.58 1.14 1.69 2.73 6.88 8.6 

0 … 15 0.46 0.54 1.19 1.77 2.95 7.58 12.5 

0 … 20 0.43 0.54 1.22 1.84 3.23 9.03 16.4 

0 … 25 0.37 0.51 1.25 1.92 3.32 10.55 24.1 

0 … 30 0.24 0.48 1.24 1.95 3.57 13.42 25.8 

Group B: “leaving-one-out” cross-validation 

0 ... 5 0.47 0.57 0.93 1.17 1.52 2.68 3.81 

0 … 10 0.47 0.53 0.92 1.17 1.57 2.99 3.85 

0 … 14 0.47 0.54 0.93 1.18 1.59 3.50 4.21 

 

The cross-validation results worth more in-depth quantitative analysis. As a 

measure of a deviation from the true values one can use a standardized prediction 

error (see e.g. [17, 18]). The standardized error  

σ

−
=δ truepred

std
qq

  

assumes a normal distribution for prediction around the true value, i.e. 

. It is shown above (see e.g. Fig. 3) that the sample data are apparently 

log-normal. That means that another quantity 

)1,0(Nstd ∝δ
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has the standard normal distribution. The latter quantity is plotted against  

and  in the Figs. 19–25. The  standardized error (21) values are plotted as a 

point cloud in every of these figures. The solid line represents local estimate of the 

mean, while dashed lines are (local mean ± local standard deviation). Deviation of 

the local mean values from the zero line signals an existence of a bias in the 

predictions and serves as an indicator of a systematic error. If the local standard 

deviations exceed one this means the estimated kriging error does not represent the 

real error of the prediction. 

minH

trueq

The standardized errors are plotted for group A (Figs. 18–21) and group B 

(Figs. 22–25) cross-validation data. The Figs. 18, 19, 22, and 23 plot  as a 

function of  while others (Figs. 20, 21, 24, and 25) are plots of  vs. .  

*
stdδ

minH *
stdδ trueq

One can see from the Figs. 18, 22, 23 that the standardized error of the cross-

validations as higher as larger distance between the prediction and the sample 

points. The “leaving-one-out” data for the group A (Figs. 19) do not suggest such 

conclusions perhaps because of kmH 8min < . 
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Fig. 18.  Fig. 19.  
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Group A: External cross−validation results
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Group A: ’leaving−one−out’ cross−validation results
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Fig. 20. Fig. 21. 
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Fig. 22. Fig. 23. 
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Group B: External cross−validation results
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Group B: ’leaving−one−out’ cross−validation results
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Fig. 24. Fig. 25. 
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CONCLUSIONS 

The feasibility study has encompassed those settlements in Belarus where 131I 

thyroidal activity had been measured among the members of public. The spatial 

configuration of the sample is defined by the geography of the thyroid 

measurements. Instead of settlement-average thyroid doses (or 131I integrated 

activities) the data on 137Cs ground deposition density are spatially interpolated to 

neighbour settlements, which are called “target” settlements. The data on 137Cs 

ground deposition density are known for the sample and the target settlements, 

both. Therefore, a possibility exists to check capability of a spatial interpolation to 

predict values in the target settlements and to evaluate how appropriate is a spatial 

sample for such interpolation. 

The feasibility study was also motivated by evident preferential bias in the 

samples. Namely, in Belarus the thyroid measurements had been taken mostly in 

high contaminated places. This fact had raised concerns in applicability of the 

spatial interpolation techniques to predict lower thyroid doses in the target 

settlements based on the higher values in the sample ones.  

The sample settlements are separated into two groups due to their spatial 

location — A and B. The sampling patterns differ for these groups. Group A is 

sampled more densely and homogeneously while the group B sampling is sparse 

and clustered.  

To compensate for the preferential sampling bias a special procedure has been 

developed. Namely, the local regression has been done on the sample data to reveal 

systematic spatial behaviour in the data — spatial trend. The regression residuals 

have been used in the ordinary kriging procedure which resulted in estimates of the 

residual and corresponding standard deviation for the target settlements. These, 

being combined with estimates of the trend in the prediction points, resulted in a 

set of predicted values. 

Predicted data have been cross-validated using the true values for the both 

target and sample settlements. Results of the cross-validation are carefully 

evaluated and analyzed. The cross-validation has demonstrated that the spatial 

interpolation is possible within the range of the residual variogram. Results of the 

external cross-validation and “leaving-one-out” method are found to be consistent to 

each other. The interpolation results for the group A are found to be adequate while 

for the group B interpolated values are systematically higher at all distances 
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between the target and the sample points. A comparison of the standardized error 

and the true values has shown underestimation of the high values for both groups 

of settlements. However, both a local regression and a kriging are smoothing 

techniques, therefore they cannot reproduce a variability of the true values and they 

always underestimate high values and overestimate low ones (see e.g. [17, p.192]). 

For the group B predictions are adequate in the medium range of the true values 

from 200 to 1000 Bq m-2 (Fig. 24).  

The feasibility study has shown a capability to compensate for sample bias for 

the data of the group A. For the group B data the study demonstrated a scarcity of 

the sample data to adequately estimate the trend, thus leading to systematic 

overestimation in the predicted values. The established technique will be applied for 

interpolation of the settlement-average 131I integrated thyroidal activity for the 

settlements of the group A. The feasibility study suggests not to use the group B 

settlements for the interpolation. However, this conclusion is validated for 137Cs 

ground deposition density and could be re-evaluated for other radioecological 

quantities like settlement average thyroid doses. 

It should be remembered that 137Cs ground deposition density and thyroid 

doses to ingested 131I do not necessarily have the same distributions and statistical 

properties. Fallout patterns of 137Cs and 131I differ considerably due to different 

transport forms and deposition mechanisms. The 137Cs data are averages specific to 

the settlement area, while the thyroid doses are mainly resulted from a 

consumption of contaminated milk. Thus, the thyroid doses can be attributed to a 

wider area than the settlement area itself, i.e. including pasture area around the 

settlement. The thyroid doses are averages of individual values which have high 

variability because of individual diet, consumption rate, and metabolic parameters. 

All said above implies that the spatial distribution of the thyroid doses are 

anticipated to have higher variance and smoother spatial distribution with higher 

correlation range. That is, some conclusions made in the feasibility study for 137Cs 

data could be different in case of thyroid doses to 131I. The latter ones are considered 

in the second part of the present study. 
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